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It has been predicted that the phase sensitive part of the current through a non-Abelian �=5 /2 quantum Hall
Fabry-Perot interferometer will depend on the number of localized charged e /4 quasiparticles �QPs� inside the
interferometer cell. In the limit where all QPs are far from the edge, the leading contribution to the interference
current is predicted to be absent if the number of enclosed QPs is odd and present otherwise, as a consequence
of the non-Abelian QP statistics. The situation is more complicated, however, if a localized QP is close enough
to the boundary so that it can exchange a Majorana fermion with the edge via a tunneling process. Here, we
derive an exact solution for the dependence of the interference current on the coupling strength for this
tunneling process, and confirm a previous prediction that for sufficiently strong coupling, the localized QP is
effectively incorporated in the edge and no longer affects the interference pattern. We confirm that the dimen-
sionless coupling strength can be tuned by the source-drain voltage, and we find that not only does the
magnitude of the even-odd effect change with the strength of bulk-edge coupling, but in addition, there is a
universal shift in the interference phase as a function of coupling strength. Some implications for experiments
are discussed at the end.
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I. INTRODUCTION

Quantum mechanical systems with topological excitations
are, in principle, ideally qualified for quantum information
processing as the state of the topological sector is not acces-
sible to local operators, and hence local perturbations cannot
lead to decoherence. The best studied example of topologi-
cally ordered states are fractional quantum Hall �QH� sys-
tems, where braiding of quasiparticles changes the ground-
state wave function. While in Abelian QH states with odd
denominator filling fraction only the phase of the wave func-
tion is changed by quasiparticle �QP� braids, the more re-
cently discovered quantum Hall state at filling fraction 5/2 is
expected to support non-Abelian QPs, whose braiding corre-
sponds to transformations in a degenerate ground-state
manifold.1–6 The ground-state degeneracy can be used to
store information in the form of quantum bits, with one qubit
for a pair of QPs, and quantum gate operations may be per-
formed by the braiding of QPs.7,8 In principle, the read-out of
quantum bits is possible by means of interference
experiments.9–11

One possible device for the readout of a topological quan-
tum bit is the Fabry-Perot interferometer. It consists of two
narrow constrictions in a Hall bar which act as quantum
point contacts and allow backscattering between counter-
propagating edges modes. Interference between partial
waves backscattered at the first and at the second quantum
point contact is sensitive to the phase acquired during a trip
around the interferometer cell. Proposals for using a Fabry-
Perot interferometer for the readout of a topological quantum
bit rely on the fact that there is a relative change in the
interference phase by � depending on the state of the qubit
enclosed in the cell.9–11

The Morre-Read quantum Hall state6 at filling fraction 5/2
can be described as a p wave superconductor of composite

fermions.12 In this picture, QP excitations are vortices ac-
companied by an electric charge �e /4. These vortices have
a zero energy bound state at their core, which is described by
a Majorana degree of freedom. The Majorana operators as-
sociated with two such vortices can be combined into a com-
plex fermion and constitute a two-level system suitable for
quantum information processing. The state of this two-level
system can be changed by moving a third QP around one
partner of the pair.5 Depending on the occupancy of this two
level system, the interference phase obtained by a partial
wave that encircles the two level system is predicted to
change by �. More generally, the influence of bulk particles
localized inside the interference cell on the Fabry-Perot in-
terference phase can be used to provide evidence for the
non-Abelian character of 5/2-QP excitations. An experimen-
tal observation of this effect may have been reported in Ref.
23.

As an example, we may consider the phase change when
voltage is applied to an ideal side gate, which is able to vary
the area A enclosed by the interferometer path, without
changing the electron density inside. If the interference sig-
nal is caused by backscattering of e /4 quasiparticles at the
constrictions of the interferometer, and if there are no local-
ized QPs inside the loop, then the phase of the interferometer
signal will change by 2� when the area is varied by an
amount �A=4�0 /B, where B is the magnetic field strength
and �0 is the flux quantum for an electron. For an odd num-
ber of bulk QPs inside the interferometer cell, however, the
leading sinusoidal dependence of the interference current on
this phase is expected to vanish, while it is restored for an
even number of bulk QPs.9–11 This dependence of the inter-
ference signal on the parity of bulk QPs in the interferometer
cell constitutes the so-called even-odd effect.

In order for the even-odd effect to be observable, it is
necessary that the quantum state of the localized QPs remain
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independent of time during the course of the current mea-
surement. This can be a problem, in real systems, because of
tunnel coupling between the bulk QPs and the edge. In prin-
ciple, one can imagine two types of tunnel couplings: tunnel-
ing of charged e /4 QPs into and out of the interferometer
cell,13 and coupling between bulk Majorana degrees of free-
dom and the Majorana mode along the edge. The former
process should be suppressed by the requirement of charge
neutrality due to the Coulomb interaction, which is expected
to be strong in small interference devices. The latter process
is likely to be experimentally relevant, and it is this process
which is the focus of the current paper.

As tunnel matrix elements typically depend on distance in
an exponential way, QPs localized near the sample edge can
have a sizable tunnel coupling. In device geometries defined
by etch trenches or top gates, the electron density typically
changes from its maximum value to zero over a distance of
many magnetic lengths, such that one can expect the filling
factor to deviate from the ideal value of 5/2 in some region
near the interfering edge states. However, any deviation from
the ideal filling fraction 5/2 implies a finite density of QPs
near the edge. Due to the spatial proximity to the interfering
edge states, these localized QPs can have a significant tunnel
coupling to the edge, and a realistic description of a non-
Abelian Fabry-Perot interferometer needs to take bulk-edge
coupling into account.

The case of one weakly coupled bulk QP was analyzed in
perturbation theory by Overbosch and Wen,14 and the case of
two bulk QPs coupled to opposite edges was studied by the
present authors.15 While for weak coupling, an analytic per-
turbative solution was possible, the strong coupling regime
was analyzed numerically for a lattice model. It was found
that at T=0, the dimensionless parameter describing the
strength of the bulk-edge coupling may be written as
�2 /vn��e�V�, where � is the tunnel-coupling strength, vn is
the velocity of the Majorana edge mode, V is the source-
drain voltage, and e�=e /4 is the QP charge. For small values
of this parameter, bulk QPs effectively decouple from the
edge, while for a large coupling strength they are absorbed
by the edge. In this manuscript, we present an exact solution
for the influence of bulk-edge coupling on the magnitude and
phase of interference in a non-Abelian Fabry-Perot interfer-
ometer.

For example, we analyze the case of a single bulk QP
whose Majorana mode is coupled to one edge of the inter-
ferometer. We find that the interference current can be ex-
actly evaluated in the regime where the length b of the inter-
ferometer is short compared to �vn /e�V. The interference
current is reduced relative to the case of no bulk impurity by
the modulus of

Jimp� �2

vn��e�V�
� = �1 +

i

2

vn��e�V�
�2 �−1/2

, �1�

and the interference phase is shifted by the phase of this
expression. Thus, in the presence of bulk-edge coupling the
even-odd effect is modified in an important way: instead of
the absence of the leading harmonic of the interference cur-
rent, this harmonic grows with decreasing voltage at a rate

which is enhanced relative to the behavior in the absence of
a bulk Majorana mode �the intensity grows �1 /V instead of
�1 /�V in the high-voltage regime�. In addition, there is a
universal phase shift of ei�/4 in the low-voltage regime rela-
tive to the high-voltage regime. The result Eq. �1� is in agree-
ment with previous perturbative and numerical results.14,15

The result Eq. �1� predicts interference contrast and phase for
arbitrary coupling strength and should be relevant for the
interpretation of �=5 /2 interference experiments.

The manuscript is organized as follows: in Sec.II we
present the model in a continuum formulation; in Sec. III we
discuss the implications of our exact solution for interference
experiments; in Sec. IV we describe the lattice formulation
of the model; in Sec V we derive the exact solution of the
lattice model; and in Sec. VI we present an interpretation of
this solution in terms of a resummed perturbation theory. In
Sec. VII we conclude with a discussion of our main results
and some additional comments on their application to experi-
ments. While Secs. I–III and VII are intended for the more
general reader, Secs. IV–VI are more mathematical and de-
scribe the derivation of our results in some detail.

II. CONTINUUM MODEL

The model we consider is a Hall bar parallel to the x axis
with two quantum point contacts4,10,11,14–17 �see Fig. 1�. In
the absence of any coupling to bulk quasiparticles the upper
�u� and lower �d� edges of the �=5 /2 state are described by
two charged boson fields 	u�x�, 	d�x� and two neutral Ma-
jorana fermion fields 
u�x�, 
d�x�. The Lagrangian density
for the boson field on each edge is that of a chiral Luttinger
liquid with velocity vc

Lc
r =

1

4�
�x	r�vc�x � i���	r. �2�

Here, r=u ,d denotes the upper and lower edge, and the plus
sign goes with r=u, the minus sign with r=d. The charge
density is given by �r= 1

2��x	r. For simplicity we set �=1
when no confusion results. The Majorana fields encode the
non-Abelian properties of the 5/2 state, their Lagrangian den-
sities are

x-b/2 b/20

u

d

u

d

η ηL R

FIG. 1. Interferometer with quasiparticle tunneling at positions
−b /2 and b /2. One localized Majorana mode couples to the upper
edge at spatial position x=x0, another one to the lower edge at the
same position. For the derivation of the exact solution, the bulk
Majoranas are positioned at the boundary of the interferometer cell
with x0=b /2.
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Ln
r =

1

4

r�x���� � vn�x�
r�x� . �3�

Within the p-wave superconductivity picture of the 5/2 state,
QPs with a charge �e /4 are vortices of the superconductor,
which have Majorana bound states at their core. In our
model, there are two localized bulk QPs which carry a zero
mode Majorana each, described by a localized Majorana op-
erator. We denote the two bulk Majorana operators by 
u ,
d,
with the subscript indicating the edge to which the quasipar-
ticle couples. In the absence of coupling, the Lagrangians of
these bulk Majorana modes are

Lb
r =

1

4

r �� 
r. �4�

We assume the two bulk QPs to be spatially well separated
from each other such that there is no coupling between the
Majorana modes 
u and 
d associated with them. The two-
dimensional Hilbert space created by these Majorana modes
is spanned by the two eigenvectors of the operator i
u
d.
The coupling of 
u to the upper edge and 
d to the lower
edge, both at x=x0, is described by the Lagrangian density

Lb−e = i��u
u�x�
u + �d
d�x�
d���x − x0� . �5�

Bulk-edge coupling gives rise to tunneling times t�r
= ���r

2 /2vn�−1. In order to judge the effect of bulk-edge cou-
pling on the interference signal, the tunneling time has to be
compared to the geometric time tb=b /vn needed to move
between the two constrictions separated by a distance b, and
to the voltage time tV=� /e�V, which can be interpreted as
the extension in time of a QP wave packet. In the limit tV
� tb, in which the interference signal is most clearly seen, the
effective strength of bulk-edge coupling is given by the ratio
tV / t�. As we shall see, if this ratio is much smaller than one,
the bulk state is effectively decoupled from the edge, and if
the ratio is much larger than one, the bulk state is effectively
absorbed by the edge and does not influence the interference
signal any more.15

A charge e /4 QP consists of a charge part and the neutral
Majorana mode associated with it. The operator that tunnels
a quasiparticle across a constriction is the product of a charge
part and a neutral part which encodes the non-Abelian statis-
tics of quasiparticles. The tunneling part of the Hamiltonian
is

Htun 	 T̂ + T̂†, �6�

where

T̂ = eie�Vt��LCLNL + �RCRNRi
u
d� �7�

transfers a quasiparticle from the lower to the upper edge
through the left �L� and right �R� constrictions respectively,

and its hermitian conjugate T̂† similarly transfers a quasipar-
ticle from the upper to the lower edge. Alternatively, one can

say that T̂ transfers a quasihole from the upper to the lower

edge, and that T̂† transfers a quasihole from lower to upper
edge. The operators CL,�R� and NL,�R� will be defined below.
The Aharonov-Bohm phase is absorbed into the relative

phase between the tunneling coefficients �L and �R. Here, V
is the voltage difference between the two edges, and e�

=e /4 is the quasiparticle charge. Correspondingly, the cur-
rent operator is given by

Ĵ =
e�

i
�T̂ − T̂†� . �8�

The operators

CL�R� 	 ei�	u��b/2�−	d��b/2��/2 �9�

are the charge part of the tunneling operator, operating on the
charge mode. The factor 1/2 in the exponential reflects the
fact that the QP charge e /4 is one half of the “natural” charge
of a state with filling fraction �=1 /2.

The neutral parts of the tunneling operators can be ex-
pressed as spin fields of an Ising conformal field theory
�CFT� �Ref. 19�

NL�R� 	 �u��b/2��d��b/2� . �10�

The � operators can be defined through their operation on
the Majorana fermion fields as18


r�y��r�x� = � sgn�x − y��r�x�
r�y� , �11�

with r=u ,d, and the minus sign going with the upper edge.
We will discuss an alternative expression for the neutral tun-
neling operator in the next paragraph. The factor of i
u
d in
the second term of Eq. �7� is included to account for the
wrapping of a tunneling quasiparticle at position x=b /2
around the two localized quasiparticles. This factor is re-
sponsible for the � phase shift between the interference pat-
terns corresponding to the two eigenvectors of i
u
d.

The neutral part of the tunneling operator can be ex-
pressed in a more intuitive way by using the parity operator
for the part of the system to the left of the tunneling site. We
arrive at this formulation by representing the 5/2 state as a
p-wave superconductor of composite fermions.12 In this pic-
ture, the quasiparticle with charge e /4 is a vortex of the
superconductor. The superconducting phase changes by 2�
when encircling the vortex so that the condensate wave func-
tion is single valued. As a Cooper pair has two fermions, the
phase of the fermionic wave function changes only by �
when encircling the vortex, and there has to be a branch cut
in the phase field seen by unpaired fermions to make their
wave function single valued. For this reason, every vortex
drags behind it a branch cut in the phase field of unpaired
fermions. The phase jump of � across the branch cut shows
up as the minus sign in the commutation relation Eq. �11�:
while a Majorana operator at spatial coordinate y�x0 is not
affected by the tunneling of a charge e /4 QP as described by
a � operator, for y�x0 the Majorana operator acquires an
extra minus sign.

Alternatively, the minus sign a Majorana operator ac-
quires when crossing the branch cut left behind by an e /4 QP
can be described by an operator which shifts the phase of
fermions by �. This operator can be found by using an anal-
ogy with spatial translations. A spatial translation by a dis-
tance a is described by the exponential exp�ip̂a�, where p̂ is
the momentum conjugate to the spatial coordinate which is
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shifted by a. In order to describe a “phase translation,” we
need the exponential of the operator conjugate to the phase
operator. In a superconductor, phase and number of cooper
pairs are conjugate so that the Cooper pair number operator
generates phase shifts. At zero temperature, the Cooper pair
density is just half the electron density �̂�x�, and the operator

P̂�− �,x0� = ei�N̂�−�,x0� = ei�
x�x0
d2r �̂�r� �12�

generates a relative phase shift of � between operators 
�y�
with y�x0 and y�x0, respectively. As N̂�−� ,x0� is the fer-
mion number operator for the region x�x0, the operator

ei�N̂�−�,x0� is just the parity of the number of fermions to the

left of x0, and we identify the operator P̂�−� ,x0� defined in
Eq. �12� as the parity operator. When evaluating

P̂�−� ,x0�
r�y� for y�x0, the change in particle number due
to the action of 
r�y� is included in the evaluation of

P̂�−� ,x0� and changes its value by minus one, while for the

opposite operator order 
r�y�P̂�−� ,x0� this is not the case. In
this way, Eq. �11� is reproduced for y�x0 when making the
identification

�u�x0��d�x0� = P̂�− �,x0� . �13�

Clearly, for y�x0 the order of P̂�−� ,x0� and 
r�y� does not

influence the value of P̂�−� ,x0�, and Eq. �11� is reproduced
again.

In the following, it will be useful to decompose the parity

operator into a bulk part P̂bulk measuring the parity of bulk

Majoranas and an edge part P̂edge. In order to keep our model
simple, we assume that any localized QPs in the region x
�−b /2 are far from the edge, so that the occupation number
of their associated Majorana states do not change during the
course of the experiment. Since the parity operator factorizes

according to P̂bulk�−� ,b /2�= P̂bulk�−� ,−b /2�P̂bulk�−b /2,
b /2�, under the above assumption it is sufficient to include

only P̂bulk�−b /2,b /2� in the tunneling operator for the right
constriction. In our model, there are only two bulk Majo-
ranas 
u, 
d inside the interferometer cell with −b /2�x
�b /2. Their parity is determined by the operator i
u
d,
which indeed appears as a factor in the definition Eq. �7� of
the tunneling operator.

As the bulk part of the parity operator is fully described
by the factor i
u
d in the tunneling Hamiltonian, the neutral
operators NL,R can be expressed in terms of the edge parity
operator. In order to find an explicit expression for it, we
express the particle density on upper and lower edge together
as �̂edge�x�= i
u�x�
d�x� and find

Pedge�− �,x0� = ei�
−�
x0 dx i
u
d. �14�

As the edge parity operator factorizes in the same way as the
bulk parity operator, the equal-time neutral correlation func-
tion �N�−b /2�N�b /2��= �Pedge�−b /2,b /2�� is given by the
expectation value of the edge parity operator for the interfer-
ometer cell

Pedge�− b/2,b/2� = ei�
−b/2
b/2 dx i
u
d. �15�

This expression will be useful for the treatment of the lattice
model introduced in Sec. IV. In the framework of this lattice
model, the edge parity operator reduces to a product over
local parity operators.

III. SIGNATURES OF BULK-EDGE COUPLING IN THE
INTERFERENCE CURRENT

To lowest order in the tunnel couplings �L, �R, the expec-
tation value of the interference contribution to the backscat-
tered current can be obtained using linear response theory. In
this approach, the perturbation is the tunneling Hamiltonian
Eqs. �6� and �7�. Starting from the relation

�I� =
1

i�



−�

0

dt��J�0�,Htun�t��� , �16�

we find after some algebra that the interference contribution
to the backscattered current is given by

Iint =
4e�

�2 Re i�L
��R�


−�

�

dte−ie�Vt/� Im��T� CL
†���CR�0��

� �T� NL���NR�0�i
u�0�
d�0�����→it+�, �17�

where T� is the time ordering operator, and � is the short time
cutoff of the theory. Using the definition Eq. �9�, the expec-
tation value of the charged correlator can be directly evalu-
ated as

�T� CL
†���CR�0�� =

�1/4

��2 + b2/vc
2�1/8 . �18�

In the absence of bulk-edge coupling, the neutral correlator
can be obtained from the representation Eq. �10� by using the
conformal dimension h�= 1

16 of the � field in the expression
for CFT correlation functions.19 One finds

�T� NL
†���NR�0�� =

�1/4

��2 + b2/vn
2�1/8 . �19�

Alternatively, it can be calculated by using a bosonized ver-
sion of Eq. �14�. Using the lattice model described in the
next section, we have been able to obtain an exact solution
for the neutral correlation function in the presence of two
impurities at x0= b

2 , one of them coupled to the upper edge
and the second coupled to the lower edge. Restoring factors
of � in Eq. �61�, we find

�T� NL
†���NR�0�i
u�0�
d�0��

=
2�1/4

�vn�2�b2

vn
2 + �2�3/8

��u�e�u
2�b−ivn��/vn

2
�2

K0��u
2�b − ivn��/vn

2�2��

� �d�e�d
2�b+ivn��/vn

2
�2

K0��d
2�b + ivn��/vn

2�2�� , �20�

where K0�x� is the modified Bessel function of order zero.
Using this expression in Eq. �17�, the interference current
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can be evaluated for arbitrary system size, bulk-edge cou-
pling, and all ratios of vn /vc. For illustrative purposes, we
evaluate now the interference current in the regime of small
interferometer length b, in which the interference contrast is
highest and where the size b of the interferometer cell can be
set to zero. In addition, we will concentrate on a situation
with only one impurity present in the bulk, say 
u. This

situation can be described by sending
b�d

2

vn
2 →� in Eq. �20�

such that the impurity degree of freedom 
d is effectively
absorbed by the edge. This situation has the benefit of being
more easily interpreted than the two impurity case. We will
see that the visibility of the interference signal grows from
zero to one as the coupling strength is increased. We define
�=−e�V /� and find

Iint =
4e�

�2 Re i�L
��R

��
�u

�vn

� 2

�



−�

�

dt ei�t

�Im��t − i� e�u
2t/vn�2

K0� �u
2

vn�2 �t − i���
�− t2 + i�t�1/4 �

=
4e�

�2 ���

�
Re��L

��R Jimp� �u
2

�vn�2�� �21�

with

Jimp�x� =
1

�1 +
i

2x

. �22�

To evaluate the time integral in Eq. �21�, we split the domain
of integration into negative and positive times. In each sub-
domain, the square roots of time in numerator and denomi-
nator cancel up to a phase factor so that the integral is a
Fourier integral of Bessel functions, which can be found in
the literature.20 For positive arguments, the Bessel function
K0�x� is real, while for negative arguments x�0, K0�x� has a
cut along the real axis and can be decomposed into real and
imaginary part according to K0�x− i��=K0�−x�+ i�I0�−x�.

With respect to the case without bulk impurity, the inter-
ference signal is modified by the additional factor
Jimp��u

2 /�vn�2� in Eq. �21�. The modulus of Jimp reduces the
amplitude of interference oscillations for small values of
�u

2 /�vn�2, while the argument of Jimp gives rise to a phase
shift. Both modulus and phase of Jimp�x� are displayed in
Fig. 2. The expansion of Jimp�x� for small arguments �weak
tunneling or large voltage� is

Jimp�x� = �1 − i��x + �1 + i�x3/2 + O�x5/2� . �23�

The expansion for large arguments �strong coupling expan-
sion� is

Jimp�x� = 1 −
i

4x
−

3

32x2 + O�x−3� . �24�

Interestingly, bulk-edge coupling not only reduces the vis-
ibility of interference oscillations but also contributes a
phase shift of � /4 between the weak and strong coupling
limit. This universal phase shift as a function of voltage is a

signature of bulk-edge coupling in a non-Abelian interferom-
eter. The phase e−i�/4 characteristic of the weak coupling
limit can be interpreted as the non-Abelian part of the phase
acquired by two charge −e /4 QHs encircling each other in
the clockwise direction. This phase factor agrees with that
obtained from the CFT correlation function of two � opera-
tors, which describe the non-Abelian part of charge �e /4
particles. Alternatively, the non-Abelian phase can be in-
ferred from the fact that non-Abelian QHs behave relative to
each other as bosons if they are in the I fusion channel, i.e.,
that Abelian and non-Abelian part of the phase cancel each
other.5,6,21 Hence, the non-Abelian phase has to compensate
the Abelian phase ei�/4 found from the operator product ex-
pansion of two ei��x�/2 QH operators.

IV. LATTICE VERSION OF THE CONTINUUM MODEL

In order to evaluate neutral correlation functions in the
presence of bulk-edge coupling beyond perturbation theory,
we develop a lattice description of the continuum model in-
troduced in Sec. II. For the lattice model, the parity expec-
tation value can be evaluated numerically for arbitrary
strength of bulk-edge coupling,15 and in Sec. V we will de-
rive the exact solution Eq. �20� by using the inversion
formula22 for so-called Hilbert-type matrices. We shall first
concentrate on the equal-time correlation function

�NLNR� = �Pedge�− b/2,b/2�� 	 �Pb� , �25�

where P�−b /2,b /2� is the edge parity operator for the up
and down Majorana modes as defined in Eq. �15�. As a first
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FIG. 2. �Color online� Modulus and argument of the factor
Jimp��2 /−vn�e�V� describing the modification of the interference
current due to bulk-edge coupling.
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step toward defining a lattice version of this operator, we
consider a one-dimensional model of complex lattice fermi-
ons defined by the Hamiltonian

Hkin = −
vn

2a
�

j

�cj+1
† cj + cj

†cj+1� , �26�

where the sum runs over lattice points j, and the lattice con-
stant is denoted by a. The kinetic energy describes a disper-
sion relation

��k� = −
vn

a
cos k, − � � k � � . �27�

We study the model at half filling with kF=� /2. Defining
N=b /a, the equal-time parity expectation value for the com-
plex lattice fermions is given by

�ei��j=−N/2
N/2 cj

†cj� = � �
−N/2�j�N/2

�2cj
†cj − 1�� . �28�

It is expressed as the expectation value of a product of lattice
operators. In order to make contact with a non-Abelian 5/2
edge, we define Majorana operators

� j = eij�/2cj + e−ij�/2cj
† �29a�

�̃ j =
1

i
�eij�/2cj − e−ij�/2cj

†� �29b�

i� j�̃ j = 2cj
†cj − 1. �29c�

This transformation corresponds to a boost to the right-
moving Fermi point. The left moving Fermi point now cor-
responds to the momentum −�. Using the equality Eq. �29c�,
the parity expectation value Eq. �28� can be expressed as the
expectation value of a product of � and �̃ operators. As the
Hamiltonian is quadratic, Wicks’s theorem can be used to
evaluate the expectation value of this product as the Pfaffian
form of the matrix of correlation functions. The Hamilto-
nians for the � and �̃ mode are

H =
vn

4a



−�

� dk

2�
�−k sin�k��k, �30a�

H̃ =
vn

4a



−�

� dk

2�
�̃−k sin�k��̃k. �30b�

As there is no coupling term between the two Majorana
modes, the correlation function matrix decomposes into a
block with � correlators and another block with �̃ correla-
tors. Although we initially need both modes to write down an
expression for the local parity operator, the determinant of
the correlation function matrix factorizes and it is sufficient
to consider the �-Majorana mode only. We can now identify
the right-moving branch of � with the upper edge and the
left-moving branch with the lower edge.

States with momenta between −� and 0 are occupied,
hence the zero-temperature correlation function is given by

�i� j�l� = 2i

−�

0 dk

2�
eik�j−l� =

1

�

�1 − �− 1� j−l�
j − l

. �31�

The correlation function vanishes if j− l is even, and is odd
under exchange of j and l. The parity expectation value for a
system of a right-moving and a left-moving Majorana mode
is given by

�Pb� = � �
−N/2�j�N/2

��i� j�� = �det��i� j� j��� . �32�

The right-hand side of Eq. �32� is positive as required be-
cause the eigenvalues of the matrix of correlation functions
�i� j� j�� occur in pairs �i� with real �. When evaluating the
determinant for different system sizes numerically, on finds
that it decays as N−1/4 in agreement with the analytical result
obtained by using � correlators in the Ising CFT.

We next want to calculate the influence of localized bulk
modes on the parity expectation value. More specifically, we
need to calculate the expectation value

�Pb,imp� = �i
u
d �
−N/2�j�N/2

��i� j�� . �33�

In order to evaluate this expectation value, we need to know
the edge-edge, the impurity-impurity, and the impurity-edge
correlation functions in the presence of a coupling between
impurities and edge. The lattice version of the bulk-edge
coupling Eq. �5� is

Hscatter =
 dk

2�
f�k��i

�u

�a

u�k + i

�d

�a

d�−2kF+k� . �34�

Here, f�k�= f�−k� is unity for momenta k�1 and drops rap-
idly to zero for larger momenta, such that the dispersion
relation can be linearized around the two Fermi points. As
the Hamiltonian for bulk and edge-Majorana states is qua-
dratic, all correlation functions needed for the evaluation of
the parity expectation value Eq. �33� can be evaluated ex-
actly. After integrating out the edge-Majorana modes, one
obtains an effective action for the bulk states

Simp =
T

2 �
�n

�
u�− �n��−
i�n

2
+ �u

2
 dq

2�
f�q�G0�i�n,q��

�
u��n� + 
d�− �n��−
i�n

2

+ �d
2
 dq

2�
f�q�G0�i�n,q −2kF��
d��n�� . �35�

Here,

G0�i�n,k� =
2

i�n −
vn

a
sin�k�

�36�

denotes the edge Green’s function in the absence of scatter-
ing, �n= �2n+1�kBT /� is a fermionic Matsubara frequency,
and T denotes temperature. Although we use a finite tem-
perature formalism here, we will focus on the zero-
temperature case in the end. As there is no coupling between
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the bulk Majorana states, the impurity-impurity correlator
vanishes �i
u
d�	0. The correlation functions between im-
purity and edge operators are given by

�i
u�− �l��k��l�� = G0�i�l,k�f�k�
�u

�a

� �
u�− �l�
u��l��Simp
,

�i
d�− �l��k��l�� = G0�i�l,k − 2kF�f�k�
�d

�a

� �
d�− �l�
d��l��Simp
. �37�

Due to chirality, the edge-edge correlation function
�i�l�l�� depends on the bulk-edge coupling strengths �d, �u
only if the coupling to the impurity occurs between the two
lattice sites l and l�. As only edge-edge correlation functions
with both l and l� inside the interferometer cell are needed
for the evaluation of Eq. �33�, these edge-edge correlators
become independent of the bulk-edge coupling strengths for
x0=b /2, i.e., for impurities coupling to the boundary of the
interferometer cell. In order to simplify the task of calculat-
ing the full neutral correlation function including bulk-edge
coupling, we will adopt x0=b /2 in the following.

In order to extract the universal long distance behavior of
correlation functions, we linearize the dispersion relation
around the two Fermi points and remove the momentum cut-
off when possible. In this way, the Fourier transform f j of a
function f � vn

a sin k� becomes

f j = 

−3�/2

�/2 dk

2�
eikj f �vn

d
sin k�

� �− ei�j + 1�

−�

� dk

2�
f�vn

d
k�eikj . �38�

The first term with a rapidly oscillating position dependence
is due to integrating over momenta −3� /2�k−� /2,
whereas the second term with a smooth position dependence
is due to integration over momenta −� /2�k�� /2. With
the help of this formula and regularizing momentum inte-
grals as i

�
0
�dk eik�x+i��= 1

�
1

x+i� , expression Eq. �31� is easily
reproduced in the limit �→0. For the bulk-edge correlation
functions, one finds

�i
u� j� =
2�u

�a

�vn
e2�u

2ja/vn
2
E1�2�u

2ja/vn
2� , �39�

�i
d� j� = �− 1� j 2�d
�a

�vn
e2�d

2ja/vn
2
E1�2�d

2ja/vn
2� . �40�

Here, the exponential integral is defined as

E1�x� = 

1

�

dt
e−tx

t
. �41�

It has the asymptotic expansions

E1�x� → − � − ln x for x → 0,

E1�x� →
e−x

x
for x → � , �42�

with �=0.57721. . . denoting Euler’s constant. Although it is
not needed for the calculations presented in this manuscript,
we would like to mention the result for the edge-edge corre-
lation function in the presence of bulk-edge coupling, which
was used to obtain the numerical result for the reduction
factor in Ref. 15. It is given by

�� j�l�imp =
1

�

1

j − l
�1 − �− 1� j−l�

−
4�u

2a

�vn
2 e2�u

2�j−l�a/vn
2
E1�2�u

2�j − l�a/vn
2�

����j���− l�−��− j���l��

− �− 1� j−l4�d
2a

�vn
2 e2�d

2�l−j�a/vn
2
E1�2�d

2�l − j�a/vn
2�

����− j���l� − ��j���− l�� . �43�

V. EXACT SOLUTION FOR PARITY CORRELATION
FUNCTION WITH IMPURITIES

As explained in the last section, we consider a geometry
where the bulk impurity couples to the edge at the boundary
of the interferometer cell, i.e., x0=b /2. This geometry some-
what simplifies calculations because now the edge-edge cor-
relation function does not have an impurity contribution. For
ease of notation, we assume a�u

2 /vn
2=a�d

2 /vn
2	�2 in the fol-

lowing, the generalization to two different couplings is
straightforward.

Again we will be calculating a correlation function by
using Wick’s theorem to rewrite that correlation function as a
determinant analogous to Eq. �32�. However, here we will
calculate the more complicated correlation function Eq. �33�.
We denote the matrix of correlation functions, whose deter-
minant needs to be calculated, by C. All diagonal elements
of C vanish. We adopt a bra-ket notation in the following and
denote a position along the edge by �j�, and the two bulk
impurities by �u�, �d�. The edge-edge correlation function is
then given by �j�C�j��, the bulk-edge correlation is

�j�C�u� =
2�

�
e2�2jE1�2�2j� ,

�j�C�d� = �− 1� j 2�

�
e2�2jE1�2�2j� . �44�

The impurity-impurity correlation function is �u�C�d�
= �d�C�u�	0. Our result is again a square root of a determi-
nant, and the determinant is the product of all eigenvalues.
Let us assume we know the eigenvalues of the edge-edge
part. For small �, the bulk-edge correlation functions �j�C�u�,
�j�C�d� are of the order � ln2 �, and the leading contribution
to the determinant is obtained by multiplying the determinant
of the edge-edge correlators with the perturbatively calcu-
lated eigenvalues of the impurity-impurity part of the matrix.

EXACT SOLUTION FOR BULK-EDGE COUPLING IN THE… PHYSICAL REVIEW B 80, 155305 �2009�

155305-7



Although the eigenvalues are calculated perturbatively in �,
which is proportional to the lattice constant and goes to zero
in the continuum limit, the final result is valid even in the
strong coupling regime with large �N. The square root of the
product of these two eigenvalues is the reduction factor R�b�,
i.e., the ratio

R =
�NLNRi
u
d�

�NLNR�0
�45�

of the neutral expectation value in the presence of two im-
purities to the expectation value without impurities.

Without bulk-edge coupling, C has two zero eigenvalues.
To determine the shift in these zero eigenvalues due to the
coupling between impurities and edges, we use second order
perturbation theory to calculate the effective matrix elements
�u�C�d�eff due to “virtual transitions” of a bulk Majorana to
the edge and back. Up to a sign, the reduction factor is then
equal to this effective matrix element,

R = �u�C�d�eff. �46�

To calculate the effective matrix element, we change to a
new basis

�a� = �u� + �d�, �b� = �u� − �d� . �47�

In the new basis, �a� only couples to even lattice sites, while
�b� only couples to odd ones. To exploit this, it is useful to
decompose the lattice into even and odd sites according to

j = 2n +
1

2
�1 + ��, j� = 2n� +

1

2
�1 + ��� . �48�

We assume that the number of lattice sites N is even such
that this decomposition works. Then, n runs from 0 to N /2,
and �= �1 determines whether the lattice site is even or
odd. In analogy to Eq. �48�, we use an �n�� basis in the
following, where �n��	�j� with j given by Eq. �48�. Denot-
ing the eigenvectors of the bulk-bulk part C0 of C by �el� and
the corresponding eigenvalues by �l, the effective matrix el-
ement between �a� and �b� state is given by

�b�C�a�eff = �
l=1

N �b�C�el��el�C�a�
�l

= �
j,j�

�b�C�j��j��C0�−1�j���j��C�a�

= �
nn�

�b�C�n+��n+��C0�−1�n�−��n�−�C�a� �49�

with �see Eq. �40��

�b�C�n+� = �n−�C�a� =
4�

�
e4�2nE1�4�2n� . �50�

The physical interpretation of the effective matrix element
Eq. �49� is that the �a� bulk state makes a virtual transition to
the edge and then back to the �b� state. For this reason, the
double sum in the second line of Eq. �49� runs over edge
states only. In order to calculate matrix elements of �C0�−1,
we use the fact that in the n, � basis C0 has the form

C0 = � 0 D

− DT 0
� �51�

with

Dnn� = Cnn�,−+
0 =

2

�

1

2�n − n�� − 1
, �52�

see Eq. �31�. Then,

�n+�C−1�n�−� = �D−1�nn�. �53�

Matrices of the form of D are known as Hilbert-type, and
using the inversion formula derived by Trench Scheinok22

we find that the inverse of D is given by

�D−1�mn =
�

4

1

n − m −
1

2

�
q�m

�1 −
1

2�q − m��
� �

s�n
�1 −

1

2�n − s�� �54�

=
1

�

1

n − m −
1

2


�1

2
+ m�
�1

2
+

N

2
− m�


�m�
�1 +
N

2
− m�

�


�n −
1

2
�
�3

2
+

N

2
− n�


�n�
�1 +
N

2
− n� . �55�

As we will finally take the limit N→� with N�2 fixed, we
can use Sterling’s formula to simplify

�D−1�mn �
1

�

1

n − m −
1

2

�m

n� 1 +
N

2
− n

1 +
N

2
− m

. �56�

As the formula Eq. �49� uses only the symmetric part of D−1,
we symmetrize and obtain

�D−1�even,mn = −
N + 2

4�

1

�mn��1 +
N

2
− n��N

2
+ 1 − m� .

�57�

Taking everything together, the reduction factor is

R =
N + 2

4�
�4�

�
�2

��n−1

N/2

e4�2nE1�4�2n�
1

�n�N

2
+ 1 − n�

2

.

�58�

Taking the continuum limit, one finds
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R = �2N
2

�3�

0

�2N

dx e2xE1�2x�
1

�x��2N − x��2

= �2N
2

�
�e�2NK0��2N��2. �59�

For the evaluation of the integral in the last equation, we
used the integral representation Eq. �41� for E1�x� and evalu-
ated the x integral in terms of a modified Bessel function
I0�x�, for details see Ref. 20. The remaining integral is again
tabulated in Ref. 20. One sees that the reduction factor is the
square of reduction factors due to the two individual impu-
rities. Using the asymptotic behavior of the zeroth order
modified Bessel function K0�z��−ln z for z→0 and K0�z�
��� /2ze−z for z→�, we find the asymptotic behavior of the
reduction factor

R��2N � 1� =
2

�
�2N�ln �2N�2,

R��2N → �� = 1. �60�

Because of the chirality of upper and lower edge, the time
dependence of the exact solution can be obtained by replac-
ing b→b− i� in the factor describing the upper edge and b
→b+ i� in the factor describing the lower edge in Eq. �59�
such that the time dependent reduction factor is given by

R�b,�� =
�u�d

vn
2

2

�
�b2 + vn

2�2�e�d
2�b+ivn��/vn

2

�K0��d
2�b + ivn��/vn

2���e�u
2�b−ivn��/vn

2

�K0��u
2�b − ivn�/vn

2��� . �61�

This extension of the static solution to finite time differences
can be justified by considering the case of one bulk impurity
coupled to one of the edges, say the upper one, first. Then,
we define a neutral correlation function

Nu�x2,�2;x1,�1;x0� = �T��u�x2,�2��u�x1,�1��i
u� , �62�

which in principle could depend on the four arguments x1, x2,
�1, �2, and the parameter x0 �position of bulk-edge coupling�
separately. As the impurity is static, there is translational in-
variance in time and Nu can only depend on the difference
�2−�1. As we consider a situation where the impurity is
coupled to a point inside the cell, we have x2�x0. Then, due
to chirality, the field �u�x2 ,�2� is not influenced by bulk-edge
coupling and does not depend on x2 and �2 separately but
only on the combination x2+ i�2, and it satisfies the differen-
tial equation ��x2

+ i��2
��u�x2 ,�2�=0. If we restrict ourselves

to time differences �2−�1�0 different from zero, the corre-
lation function Nu satisfies the same differential equation and
can for this reason only depend on the variables x2+ i��2
−�1� and x1. However, from Eq. �59� we see that the static
correlation function only depends on the difference x1−x2, so
we can conclude that Nu�x2 ,�2 ;x1 ,�1 ;x0� is a function of the
single variable x1−x2− i��2−�1�, and that the correct analytic
continuation of Eq. �59� is indeed given by replacing b→b
− i� with b=x1−x2 and �=�2−�1. The analytic continuation
for the lower edge can be derived by a similar argument.

VI. INTERPRETATION IN TERMS OF RESUMMED
PERTURBATION THEORY

In this section, we show that the exact solution Eq. �59�
can be reproduced by resumming the perturbative expansion
of the neutral correlation function in powers of the bulk-edge
coupling constant. The terms contributing to this resumma-
tion are those which turn the zeroth order bulk-bulk correla-
tion function �T�
r���
r�0��0	1 into the full correlator. The
�u�u
u-correlation function appearing in the lowest-order
expression Eq. �64� is not modified in the perturbative ex-
pansion due to the special choice x0=b /2, which implies that
the chiral �u�u
u-correlation function is only evaluated for
spatial arguments x�x0. As one can see, for example, from
the edge-Majorana correlation function Eq. �44�, bulk-edge
coupling is only important if one spatial argument is to the
left and another one to the right of x0.

Since upper and lower edge decouple in perturbation
theory �modulo fusion channels�, we consider only one im-
purity coupled to one edge, say the upper edge. We start by
calculating the neutral equal-time correlation function

Iu = ��u�− b/2��u�b/2��i
u� �63�

in perturbation theory. The lowest-order contribution is15

Iu
�1� = − �i�u


−�

�

d� �T��u�−
b

2
,0+��u�b

2
,0−�
u�b

2
,���

0

� �T�
u���
u�0��0. �64�

This expression is logarithmically divergent and needs to be
regularized by a cutoff on the time integral, which in Ref. 15
was inserted by hand. However, when resumming the infinite
set of diagrams which turns the zero order correlator into the
full correlator, the integral becomes finite and we are able to
reproduce the exact solution for the reduction factor in Eq.
�59�. In order to verify this proposition, we calculate the
expression Eq. �64� with �T�
u���
u�0��0 replaced by the full
correlation function �T�
u���
u�0��. From the action Eq. �35�
we find in frequency space

− �
u�− �l�
u��l�� =
2

i�l +
2i�u

2

vn
sign�l

. �65�

After calculating the Fourier transform to Matsubara time we
find

− �T�
u���
u�0�� =
1

�
Im�e−i� 2�u

2/vnE1�− i� 2�u
2/vn�� .

�66�

The calculation can be expressed in a more compact fashion
by defining

g�− z� =
1

�
e−2z�u

2/vnE1�− 2z�u
2/vn� . �67�

In addition, we make use of the CFT correlation function
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��u�− b/2,0+��u�b/2,0−�
u�b/2,���0

=
1

�2�
�− b�3/8 1

��b + i��i�
. �68�

Note that the additional factor 1 /�� in Eq. �68� as compared
to Ref. 15 is due to the difference in the Majorana Lagrang-
ian Eq. �3� as compared to.15 Now we can express the equal-
time correlation function as

Iu = �i�u�− b�3/8 1
�2�



−i�

i� dz

i

g�− z� − g�z�
�z�z + b�

. �69�

We close the integration contour in the right half plane for
the integral over g�z� and in the left half plane for g�−z�. We
are allowed to do so because g�z��1 /z for large z in the
right half plane, which together with the asymptotic 1 /z be-
havior of the ����� correlator makes sure that the infinite
semicircle does not contribute to the integral. As the �����
correlator has a cut only along the negative real axis between
z=−b and z=0, the integral over g�z� vanishes. The integral
over g�−z� can be converted into a contour encircling this cut
and gives

Iu = �u
�i�− b�3/8� 2

�3

0

b

dx
e−2x�u

2/vnE1�2x�u
2/vn�

��b − x�x
. �70�

We note that the expression for Id differs from Eq. �70� by a
factor of i due to the opposite chirality in the correlator Eq.
�68�. For this reason, the reduction factor obtained from the
product IuId is real in agreement with Eq. �59�. The expres-
sion Eq. �70� agrees up to a phase factor with the correlation
function obtained from the square root of the reduction factor
Eq. �59�. As an additional benefit, using the finite tempera-
ture expressions for the ����� and �
u
u� correlators opens
a route toward a generalization to finite temperature.

VII. DISCUSSION

In this paper, we have analyzed the influence of a tunnel
coupling between bulk and edge-Majorana states on the vis-
ibility and phase of interference oscillations in a non-Abelian
�=5 /2 quantum Hall interferometer. Such a tunnel coupling
is important because it blurs the distinction between bulk and
edge degrees of freedom and thus complicates the observa-
tion of the even-odd effect as a signature for non-Abelian
statistics. In our discussion, we have focused on the behavior
at temperature T=0, for an interferometer encircling one or
two localized quasiparticles �QPs�, as a function of the
source-drain voltage and the strength of coupling between
the Majorana modes of the impurities and the neutral modes
of the edge.

The present paper is an extension of results presented in a
previous letter by the authors.15 In the present paper, we have
found an exact analytic formula for the equal-time parity
correlation function for the two ends of the interferometer,
when the localized quasiparticles are both located close to
one end, and we have verified that the correlation function
saturates, in the strong coupling limit, at the same value as
one would find in the absence of localized quasiparticles.

This correlation function was only obtained numerically in
our previous work. Analyzing the analytic properties of the
function in the space-time plane, we now obtain an analytic
form for the correlation function at two different times, and
from that we can predict the dependence of the interference
amplitude on the applied voltage and the bulk-edge coupling
strengths. We have also been able to examine the phase shift
in the interference pattern introduced by the presence of a
finite coupling between the bulk QPs and the edge. In addi-
tion, the current paper presents various details of the analysis
that had to be omitted from Ref. 15 due to lack of space.

In our work, we have particularly examined the case of a
short interferometer, or relatively low voltage, where the in-
terference visibility is largest. Specifically, we assume tV
� tb, where, tb=b /vn is the time needed for a neutral excita-
tion to move along one edge, from one constriction the other,
and tV=� /e�V is the extension in time of a QP wave packet
transferred from one edge to the other by backscattering at
one of the constrictions. We shall summarize here the quali-
tative results of our studies, and then say a few words about
their implications for experiments.

We start by discussing the case of a single bulk Majorana
mode inside the interferometer. In the absence of bulk-edge
coupling, the leading harmonic of the interference signal
vanishes. In agreement with previous analyses of this
problem,14,15 we find that for weak coupling, at T=0, inter-
ference can be observed but is reduced by a factor propor-
tional to �tV / t�, where t�= ���2 /2vn�−1 is the characteristic
tunneling time associated with the exchange of a Majorana
particle between the localized QP and the edge. For large
values of the effective coupling constant tV / t�, the bulk Ma-
jorana mode is effectively absorbed by the edge and the in-
terference signal is fully restored, such that the strong cou-
pling case corresponds to an interferometer with no bulk
degree of freedom. In addition, on the way from weak to
strong coupling, the phase of the interference signal is
shifted by � /4. Although bulk-edge coupling enforces a
modification of the way one looks at the even-odd effect, it
actually enriches this effect with a new direction in param-
eter space, as the dimensionless coupling strength tV / t� de-
pends on source-drain voltage. The signature for an odd
number of impurities, with just one of them coupled to the
edge, is not the complete absence of the leading harmonic,
but rather a reduced amplitude, which depends on the ap-
plied voltage. The interference intensity grows with decreas-
ing voltage at a rate which is enhanced relative to the behav-
ior in the absence of a bulk Majorana mode �the intensity
grows �1 /V instead of �1 /�V� until the reduction factor
saturates at unity. In addition, when the reduction factor is
small compared to unity, the interference factor will have
universal phase shift of � /4 relative to the pattern in the
strongly coupled regime.

Our results for a single bulk QP at T=0 can be readily
generalized to the case of finite temperatures. Qualitatively,
the temperature will make relatively little difference as long
as kT is small compared to e�V. However in the opposite
limit, temperature will be important, and its effect may be
roughly estimated by replacing the voltage time tV, in the
formulas above, by the thermal time tT	� /kT. A more quan-
titative analysis can be given, but it will not be discussed
here.
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In the case of two bulk Majorana modes coupled to op-
posite edges, with comparable coupling strengths, the aver-
age value of the interference signal shows the same qualita-
tive behavior as in the case of a single impurity. However,
the average value of the interference current now has a more
subtle interpretation than in the case of a single impurity: due
to the presence of the factor i
u
d in the tunneling operator,
the interference signal is sensitive to the state of the two bulk
Majorana modes even in the absence of bulk-edge coupling.
Although in the absence of bulk-edge coupling the expecta-
tion value of i
u
d does not change in time once it is pre-
pared in an eigenstate, the quantum statistical average
�i
u
d� is zero, as the average is taken over both possible
states of the system. Experimentally, then, the quantum sta-
tistical average corresponds to a situation where the interfer-
ence signal is averaged over different initializations of the
bulk states.

In the presence of weak but nonzero coupling between the
bulk and edge modes, two things happen: �i� the quantum
mechanical average �i
u
d�� �tv / t��ln2�t� / tV� is now finite;
and �ii� for a single experiment starting with the bulk states
initialized in an eigenstate of i
u
d, the interference phase
will fluctuate on the time scale min�t�u , t�d�, so that the time
average of the interference current over these quantum me-
chanical fluctuations is equal to the quantum statistical aver-
age.

Now we must distinguish between two experimental situ-
ations. If the experimental measurement is averaged over a
time tav that is long compared to one or both of the switching
times t�, then the experiment will measure the statistical av-
erage interference signal, which will be very close to zero if
t� is much longer than tV and tT. On the other hand, if the
bulk modes are so weakly coupled to the edge that for both
bulk QPs, t�� tav, then the experiment will not measure a
statistical average, but will see only one or the other of two
possible fermion states. In this case one will see a full inter-
ference signal, with the same amplitude as if the impurities
were not there at all, but with a phase that depends on the
starting configuration of the system.

More generally, we may distinguish three ranges of cou-
pling strengths for a QP localized in the bulk. If coupling to
the edge is so weak that t�� tav, we may say that the bulk
state is “decoupled” from the edge. If the coupling is in the
range where t� is small compared to tV and tT, then the QP is
“strongly coupled” to the edge. If the coupling strength is in
the range where t� is small compared to tav, but large com-
pared to either tV or tT, then we may say that the QP is
“weakly coupled” to edge.

In an experiment where the interfering edge encloses two
or more localized QPs, we may ignore any strongly coupled
QPs, as they will be effectively incorporated into the edge. If
there are no weakly coupled QPs inside the loop, then the
presence or absence of the interference signal corresponding
to charge e/4 will be determined by the number of decoupled
QPs inside the loop. The interference pattern will be present
if this number is even, and absent otherwise. If there are any
weakly coupled QPs inside the loop, however, with relax-
ation time t� small compared to the experimental averaging
time, then the interference pattern will be absent, regardless
of the number of decoupled QPs that may also be present.

In a recent experiment by Willett et al.,23 resistance oscil-
lations in a Fabry-Perot device were studied experimentally.
For magnetic fields near a bulk filling fraction �=5 /2, oscil-
lations in the longitudinal resistance were observed as a
function of side gate voltage. Depending on the range over
which the side gate voltage was varied, consecutive doubling
and halving of the voltage period of resistance oscillations
was observed. The side gate voltage was interpreted as
changing the area of the interferometer cell. If the bulk filling
fraction deviates slightly from the exact value of 5/2, a
change in area will once in a while change the number of
QPs inside the interferometer cell by one. If the number of
QPs changes from even to odd, the fundamental harmonic is
suppressed and the period of the interference signal is
halved, while for a change from an odd to an even number of
localized QPs inside the cell, the period is doubled. A re-
duced voltage period in the presence of an odd number of
localized QPs can arise from interference of Abelian charge
�e /2 QPs or from non-Abelian charge �e /4 QPs encircling
the interferometer cell twice. This interpretation of the
experiment23 is discussed in more detail in Ref. 24.

A difficulty with this interpretation is that it seems to re-
quire that all QPs inside the edge are either completely de-
coupled from the edge, or strongly coupled so that they are
incorporated into the edge. If there any QPs in the interme-
diate weakly coupled range, where the Majorana state
changes back and forth many times during the averaging
time of the experiment, then the interference corresponding
to charge e/4 would be completely absent, or at least greatly
reduced in size. It is not clear to us, why there should be no
weakly coupled QPs inside the interferometer in the interfer-
ence experiments of Ref. 23, nor is it clear why one should
be rid of their effects if such QPs are present. We do note,
however, that one possible ingredient that is missing from
our analysis is a tunnel coupling that allows for an exchange
of Majorana fermions between bulk quasiparticles. In the
presence of such a coupling, the degeneracy of the localized
bulk Majorana states is removed. The resulting spectrum is
then composed of several states. Each of these states corre-
sponds to an interference pattern, whose amplitude and phase
are determined by the expectation value and fluctuations of
the parity operator in that state. The coupling of the bulk
states to the propagating Majorana mode of the edge intro-
duces a width to these states, equilibrates them to the tem-
perature of the edge, and thermally averages the interference
pattern. Then, if the splitting between the bulk states is large
compared to their width and to the temperature, a well de-
fined interference pattern will be observed. A recent
estimate25 for the tunnel splitting between quasiparticles is
rather sizeable, about 100 mK for a separation of 0.1 micron.
This effect and the overall problem clearly require further
investigation.

Altogether, the experimental results obtained so far are
not yet well understood by theory, and it is not yet clear that
the observed effects originate from the unique properties of
non-Abelian quasiparticles at �=5 /2. It is possible that a
clue to that question may be obtained from the transition
region between two different periods, when a change in the
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number of localized QPs happens due to a change in area of
the interferometer cell, and when the distance between edge
and bulk QP decreases as a function of side gate voltage.
Then, the bulk-edge coupling should change from small to
large values, and one can expect that the theory developed in
this manuscript is applicable. It would be interesting to ana-
lyze the data of Ref. 23 from the point of view of bulk-edge
coupling, and to test the theoretical prediction that in the
transition region between different gate voltage periods the
interference current has a modified power law dependence on
source-drain voltage and that there is a � /4 phase shift as a
function of source-drain voltage.

We recently learned that a similar problem was solved by
W. Bishara and C. Nayak using a different method.26
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